On the Fixed Points of Abelian Group Automorphisms

نویسندگان

  • James Checco
  • Rachel Darling
  • Stephen Long
  • Katherine Wisdom
چکیده

In this article, we present general properties of xed-point groups of the automorphisms of nite groups. Speci cally, we determine the form of xed-point groups and partition Aut(G) according to the number of xed points possessed by each automorphism. A function θ records the size of each partitioning set; we nd properties for θ in general and develop formulae for θ with respect to certain classes of nite abelian groups. Acknowledgements: The authors did this work under Professor Jill Dietz in the Directed Undergraduate Research course in the fall of 2009, and would like to thank St. Olaf College for supporting this research. Page 50 RHIT Undergrad. Math. J., Vol. 11, No. 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On equality of absolute central and class preserving automorphisms of finite $p$-groups

Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^...

متن کامل

Fixed points of automorphisms of real algebraic curves . ∗ Jean - Philippe Monnier

We bound the number of fixed points of an automorphism of a real curve in terms of the genus and the number of connected components of the real part of the curve. Using this bound, we derive some consequences concerning the maximum order of an automorphism and the maximum order of an abelian group of automorphisms of a real curve. We also bound the full group of automorphisms of a real hyperell...

متن کامل

2 8 Se p 20 06 Fixed points of automorphisms of real algebraic curves . ∗

We bound the number of fixed points of an automorphism of a real curve in terms of the genus and the number of connected components of the real part of the curve. Using this bound, we derive some consequences concerning the maximum order of an automorphism and the maximum order of an abelian group of automorphisms of a real curve. We also bound the full group of automorphisms of a real hyperell...

متن کامل

Fixed points of automorphisms of real algebraic curves

We bound the number of fixed points of an automorphism of a real curve in terms of the genus and the number of connected components of the real part of the curve. Using this bound, we derive some consequences concerning the maximum order of an automorphism and the maximum order of an abelian group of automorphisms of a real curve. We also bound the full group of automorphisms of a real hyperell...

متن کامل

On Marginal Automorphisms of a Group Fixing the Certain Subgroup

Let W be a variety of groups defined by a set W of laws and G be a finite p-group in W. The automorphism α of a group G is said to bea marginal automorphism (with respect to W), if for all x ∈ G, x−1α(x) ∈ W∗(G), where W∗(G) is the marginal subgroup of G. Let M,N be two normalsubgroups of G. By AutM(G), we mean the subgroup of Aut(G) consistingof all automorphisms which centralize G/M. AutN(G) ...

متن کامل

Some properties of marginal automorphisms of groups

AbstractLet W be a non-empty subset of a free group. The automorphism of a group G is said to be a marginal automorphism, if for all x in G,x^−1alpha(x) in W^*(G), where W^*(G) is the marginal subgroup of G.In this paper, we give necessary and sufficient condition for a purelynon-abelian p-group G, such that the set of all marginal automorphismsof G forms an elementary abelian p-group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010